Surface finishing represents a large portion of manufacturing operations. Sanding is a widely used surface finishing process during manufacturing of parts made from metal and composite. Sanding is an ergonomically challenging operation. Traditionally robots are used only on mass production applications. The manual programming of robots is economically not viable in high-mix applications; therefore, sanding has remained a manual operation. The advent of human-safe robots is enabling robots to collaborate with humans on ergonomically challenging tasks and amplify human productivity. This enables robots to perform a large fraction of sanding operation and only requires humans to perform the final touch-ups. The availability of 3D vision and force sensors enables robots to operate without custom fixtures and accommodate part and fixture variability. These recent advances in robotics make it possible for robots to be used in high-mix sanding applications. This presentation will describe artificial intelligence technology to enable robotic assistants to program themselves from the high-level task descriptions and utilize sensor data to adapt the programs to deliver efficient and safe operational performance. The robotic sanding solution ensures quality consistency, increases productivity, and enables scalability in production for the manufacturers.
Sponsored by: